tolog for TMQL?

http://www.ontopia.net 1

Preliminaries

http://www.ontopia.net 2

topia
7
tolog status

e Current version is 0.1

— can only query associations and type-instance relationship

— supports and, or, not, and inference rules

— aproposal for version 1.0 is being developed
 Three implementations

— one in-memory implementation in the OKS

— one SQL-based implementation also in the OKS

— one in-memory implementation in TM4J
« Has been in active use since 2001

— is by now well understood

— a substantial number of people have learned it

— has proven to be easy to implement, use, and learn
* Ontopia is very pleased with tolog

— several customers have chosen us because of it

— one even chose to use topic maps because of it...

http://www.ontopia.net 3

L})plc:

The Datalog inheritance

« Datalog is a subset of Prolog, used in deductive databases

« These were a class of databases that implemented logical
inferencing on top of relational databases

« A large body of research was done on this late 80s and early 90s
« tolog is essentially Datalog for topic maps
— this means that this body of research can be applied to tolog

— we have found several valuable insights in this material already
— it also means tolog is already familiar to many people

http://www.ontopia.net 4

Tutorial

http://www.ontopia.net 5

The basics of tolog

* Is loosely based on the Prolog programming language
« Some features also stolen from SQL
« Basic feature: matching of predicates against topic map data

« Supports querying (selects) on
— associations
— class-instance relationships

 More features need to be added before it can become TMQL

http://www.ontopia.net

tolog query results

- tolog does querying by matching a query against the data

* In this process variables are bound to values

A tolog query result is basically a table with the variables as
columns and each set of matches as a row

Query:
Return all composers and the operas that
they composed

composed-by($A : composer, $B: opera)

http://www.ontopia.net

A B

Boito, Arrigo Mefistofele
Boito, Arrigo Nerone
Catalani, Alfredo Dejanice
Catalani, Alfredo Edmea
Catalani, Alfredo La Falce
Catalani, Alfredo La Wally
Catalani, Alfredo Lorelei

Association predicates

« General form of a predicate:
— assoctype (player1 : roletypel, player2 : roletypeZ2)

« Association and role types are specified with topic references:
— use topic id (or another form of reference — described later)
— e.g., born-in (player1 : person, player2 : place)

« Players may be specified in two ways:
— using a variable ($name), meaning: find all matches in this position
— e.g., born-in ($A : person, $B : place)

— using a topic reference, e.g. the topic id of the player (or another form of
topic reference — described later)

— e.g., born-in (puccini : person, $B : place)

http://www.ontopia.net

Some simple examples

* born-in($SPERSON : person, $PLACE : place)?
— find all person and place role players in born-in associations

e born-in($SPERSON : person, lucca : place)?
— find all people born in Lucca

* born-in(puccini : person, $PLACE : place)?
— find all places where Puccini was born (there's only one)

* born-in(puccini : person, lucca : place)?
— was Puccini born in Lucca?
— will return single empty match (true) or nothing (false)

* Note: Queries always end with '?’

http://www.ontopia.net

Chaining predicates (AND)

* Predicates can be chained (with implicit ands)

— born-in($PERSON : person, $PLACE : place),
located-in($PLACE : containee, italy : container)?

« This query finds all the people born in Italy
— It first builds a two-column table of all born-in associations
— Then, those rows where the place is not located-in Italy are removed

 Any number of predicates can be chained

http://www.ontopia.net

10

topia

Projection

« Sometimes queries make use of temporary variables that we are
not really interested in

 The way to get rid of unwanted variables is projection

« Syntax:

select $variable (, $variable)* from
<query>?

 The query is first run, then projected down to the request
variables

http://www.ontopia.net 11

Sorting

Using the result is sometimes easier if we sort it

« Syntax:

<select>
<query>
order by $variable (, $variable)*?

e Will sort by variable in ascending lexical order

 Ascending order is the default
— To sort by descending order, append the word 'desc’

* Note that you can sort by any humber of variables
— useful when one variable has many equal matches

http://www.ontopia.net

12

Making use of OR

« Or allows us to specify multiple ways of finding results

* Find opera premieres by city
— { premiere($OPERA : opera, $CITY : place) |

premiere($OPERA : opera, $THEATRE : place),
located-in($THEATRE : containee, $CITY : container) } ?

 This is necessary because for some operas we don't know the
theatre, only the city

— some premiere associations are between operas and theatres
— others are between operas and cities

 OR has a higher order of precedence than AND

http://www.ontopia.net 13

topia

The built-in instance-of predicate

Using select returns topics that play the role represented by the
variable (here: $CITY)

— This has nothing to do with the types of those topics

— In our case, some are cities, others are theatres, television stations and
even countries!

We need to extract just the topics of type "city"” from this list
There is a built-in predicate that makes this easy

instance-of has the following form:
— instance-of (instance, class)
— NOTE: the order of the arguments is significant

Like players, instance and class may be specified in two ways:
— using a variable (fname)
— using a topic reference
— e.g. instance-of ($A, city)

http://www.ontopia.net 14

L})plc:

Counting

« Projection has an additional feature: counting

« If you want to know which city had the most premieres, you can
tell tolog to count them

— select $CITY, count($OPERA) from
instance-of($CITY, city),

{ premiere($OPERA : opera, $CITY : city) |
premiere($OPERA : opera, $THEATRE : theatre),
located-in($THEATRE : containee, $CITY : city) }

order by $CITY ?

« This will collapse all rows where the city column is the same, and
counts the number of collapsed rows

http://www.ontopia.net 15

L})plc:

Some more predicates

« In addition to instance-oftolog has two other useful predicates:

« direct-instance-of (instance, class)

— does not take account of the superclass-subclass relationship,
as instance-of does

« $A/=9%B
— true if the two values are not identical
— {..$A.. | ..$A.. }, instance-of($A, bling)

http://www.ontopia.net 16

Negation

 Negation in tolog is a kind of filter
 What this means is that it can't generate matches
 You must first produce matches, and then remove with not

 People other than composers that were born in Italy:

born-in(PERSON : person, $PLACE : place),
located-in($PLACE : containee, italy : container),
not(instance-of(SPERSON, composer))?

 Removes all matches where the person is a composer (or a
subclass thereof)

http://www.ontopia.net

17

L})plc:

Inference rules

« Enable the query language to deduce new facts that are implied by the
information already in the topic map

 For example, if a composer ‘X' wrote an opera to a libretto based on a
work by writer 'Y’, one can imply an “inspired by” relationship

« Example:
inspired-by(X, SY) :—
composed-by ($X : composer, SOPERA : opera),
based-on (SOPERA : result, SWORK : source),
written-by (SWORK : work, SY : writer).

 Use:
inspired-by (SA, hugo)?

http://www.ontopia.net 18

Ways of referring to topics

« So far we have always used topic IDs to refer to topics
— topicID
* requires topic to be defined in top document
* if not, use source locator

e There are a number of alternatives:

— objectID
* syntax: @342231

* always works, but hard to read and write and not stable across different versions
of the topic map and (possibly) the OKS

» fine for dynamic use in applications
— source locator
» syntax: s"file.xtm#type" (like fully qualified IDs)
— subject indicator
» syntax: i"http:/psi..." (most stable — independent of internal IDs)

— subject address
» syntax: a"http://www..." (also stable)

http://www.ontopia.net 19

Proposed extensions

http://www.ontopia.net 20

L})plc:

Occurrence predicates

 These allow occurrence types to be used as predicates:
— homepage($COMPANY, $URI)?
— birthdate($PERSON, $DATE)?

« This also means that string literals are necessary for queries like
— birthdate($PERSON, “1973-25-12")?

http://www.ontopia.net 21

L})plc:

Comments

« For non-trivial rules files one quickly finds a need for comments
— introductory text at the beginning of the file
— explanation of what the different inference rules do
— commenting out code
 Proposal
'%' starts a comment which extends to the end of the line
— '%' inside a string does not start a comment
« Rationale
— this is the Prolog and Datalog syntax for comments

http://www.ontopia.net 22

L})plc:

Non-binding clauses

« Sometimes you want to include a clause to get a particular value,
not as an inclusion criterion
« We want all companies based in Oslo and their home pages

— located-in(COMPANY : located, oslo : location),
homepage($COMPANY, SHOMEPAGE)?

« We won't get companies based in Oslo which have no home page,
but that's wrong

 Proposed solution:

— located-in($COMPANY : located, oslo : location),
{ homepage($COMPANY, $HOMEPAGE) }?

 Rationale:

— can be interpreted as if there were an empty or branch that always succeeds
— no extra characters or constructs needed

http://www.ontopia.net 23

L})plc:

Introspective queries

 The constructs provided so far can only be used when all types are
known
e Queries like the following cannot be formulated
— find all association types in this topic map
— find all role types used in more than one association type
— find all occurrence types
— find all topics used as scopes which are not role types

 To achieve this we propose a set of predicates based on the SAM

« Two possible approaches
— #1: one predicate per information item type
» each predicate has one keyword argument per property (almost)
— #2: one predicate per property (pretty much)
* each predicate has one or two arguments

http://www.ontopia.net 24

topia
e
Approach #1

 Find all association types in this topic map
— association($TYPE : type)?
« Allrole types used in more than one association type

— association-role($TYPE : type, $ASSOC1 : association),
association-role($TYPE : type, $ASSOC2 : association),
association($ASSOCH1 : association, SATYPE1 : type),
association($ASSOC?2 : association, SATYPEZ2 : type),
$ATYPE1 /= SATYPE2?

« All occurrence types
— occurrence($TYPE : type)?
« All topics used as scopes but not as role types

— { association($SCOPE : scope) | basename($SCOPE : scope) | ... },
element($SCOPE, $THEME),
not(association-role($THEME : type))?

http://www.ontopia.net 25

topia
e
Approach #2

 Find all association types in this topic map
— select $TYPE from type($ASSOC, $TYPE), association($ASSOC)?
« Allrole types used in more than one association type

— role($ASSOC1, $ROLE1), type($ROLE1, $TYPE),
role($ASSOC2, $ROLE2), type($ROLE2, $TYPE),
type($ASSOCT, SATYPE1), type($ASSOC2, $ATYPE2),
$SATYPE1 /= $SATYPE2?

« All occurrence types
— select $TYPE from occurrence($TOPIC, $OCC), type($OCC, $TYPE)?

« All topics used as scopes but not as role types
— select $THEME from
scope($CHARACTERISTIC, $SCOPE),
element($SCOPE, $THEME),
not(role($ASSOC, $ROLE), type($ROLE, $THEME))?

http://www.ontopia.net 26

L})plc:

Problems with existing tolog

* Referring to topics with URIs is now very painful

— URIs are long and awkward and must now be spelled out in full every time
 Name collisions

— if one of your IDs clash with the built-in predicates you must use URIs

— if you have a lot of inference rules they can clash with each other, with IDs,
and with built-in predicates

« Flat namespace limits number of predicates

— if predicates for strings, numbers, dates, ... are to be introduced chances of
collisions increase

— similarly, having large numbers of inference rules becomes difficult

http://www.ontopia.net 27

L})plc:

Solution: prefixes and modules

« Declaring prefixes which are bound to nhamespaces solves this

using xtm for "http://www.topicmaps.org/xtm/1.0/core.xtm#" as identifier
select $TOP from

xtm:superclass-subclass($TOP : xtm:superclass, $SUB : xtm:subclass),
not(xtm:superclass-subclass($SUP : xtm:superclass, $TOP : xtm:subclass))?

« Alternatives for the 'as’ part are

identifier: use URI as subject identifier
subject: use URI as subject address
source: use URI as source locator

uri: use URI as prefix for a URI literal
module: load rules file from the URI

 The language can define built-in modules identified by URI

these are treated as ifthey were rules files, but don't need to be loaded
instead, query engines can recognize the URlIs

http://www.ontopia.net 28

L})plc:

A string module?

* A built-in string module could provide predicates like

— string:upper($IN, $OUT), string:lower($IN, $OUT), string:title($IN, OUT)

— string:concat($IN1, $IN2, $OUT)

— string:starts-with($STR, $SUB), string:contains($STR, $SUB)

— string:substring($STR, $OUT, start, end?)

— string:length($STR, $LEN)

— string:sub-before($STR, $SUB, $OUT), string:sub-after($STR, $SUB, $OUT)
* Note that not all arguments here can bind new values

— string:length($STR, 5) would logically give all strings of length 5, but should
be considered an error unless $STR is bound by some other predicate

http://www.ontopia.net 29

L})plc:

More extensions

 To make this work we'll need
— numbers, and a syntax for numeric literals
— the == operator
— probably also <, <=, >, >= operators
— possibly also operators for basic arithmetic (+, -, *, /)
» Clearly we can, if we want, also put in modules for
— regular expressions
— date operations
— pretty much anything you can imagine
 The language is extensible through the addition of modules and
predicates
— this means we can grow it as we want; the basic model can remain the same
— it also leaves room for proprietary extension in a controlled way

http://www.ontopia.net 30

L})plc:

Modifications

« Can be done through the addition of predicates which modify the
topic map

 Must be added with care, as modification introduces time
— order of evaluation suddenly matters

* Delete

— instance-of(PERSON, bad-person), delete($PERSON)?
 Update

— basename(london, SNAME), set-value($NAME, 'London')?
« Addition

— add-basename(london, 'Londinum’, $NAME), add-theme($NAME, latin)?

http://www.ontopia.net 31

L})plc:

The consequences of modules

« tolog can be made to consist of parts

— the language core, defining the evaluation model, the concept of predicates,
and the module system

— modules can be added for different purposes, as needed

— the topic mappiness of tolog can be made to reside in a particular module
« This allows great flexibility in the language design

— and, not to forget, in the evolution of the language

http://www.ontopia.net 32

topia
e
Weaknesses

* Not sure how to handle scope

— aspecial / operator on the predicate level?

— by introducing support for sets?

— by a special clause at the end: SELECT ... FROM ... IN SCOPE ...?
« Association syntax is verbose

— not clear how to shorten it; convenience rules may be one solution
* Result sets are not topic maps

— can add the ability to interpret them as such, however
« Association role handling is subtle

— tricky to get right, understand, and implement
« Using ID is not the best solution

— very concise and natural, but doesn't work in all cases

— generalization to source locators and prefixes improves on this

http://www.ontopia.net 33

L})plc:

Integration in context

« One of the main reasons to have a query language is to allow its
use in various contexts

— in languages built on top of the query language (XSLT, Schematron, mapping
files, ...)

— in programming languages etc

« tolog is not straighforward to integrate in this way

« A functional language that returns a result as a set is easier
— XPath works this way, which makes it very easy to embed
— afunctional language does not fit topic maps very well, however

« As will be shown, tolog can be used this way

http://www.ontopia.net 34

Relationship to other standards

http://www.ontopia.net 35

topia
_
The RDF QLs

It turns out that most RDF QLs are Datalog-like

— not all choose a pure Datalog-like approach; some only have a Datalog core
« RDQL
— SELECT ?givenName
WHERE (?y, <vCard:Family>, "Smith") ,
(?y, <vCard:Given>, ?givenName)
USING vCard FOR <http://www.w3.0rg/2001/vcard-rdf/3.0#

. RQL
. RIL
. 277

http://www.ontopia.net 36

topia
7
tolog can query RDF

« By adding a new kind of 'as’' keyword tolog can query RDF
A cross TM/RDF query:

— using foaf for "http://xmins.com/foaf/0.1/" as rdf
xc for "http://psi.ontopia.net/xmliconf/#" as indicator
select $B from
foaf:mbox($A, "mailto:larsga@ontopia.net"),
foaf:knows($A, $B),
foaf:mbox($B, $BMAIL),
xc:email($BTM, $BMAIL),
xc:employed-by($BTM : xc:employee, $C : xc:employer),
xc:homepage($C, "http://www.empolis.com")?

* Note the use of the email address to do the join across the TM/RDF
boundary

http://www.ontopia.net 37

topia
e
Consequences

« tolog can be used to do RDF/TM integration in applications

« ltis technically possible to create a common RDF/TM query
language core, maybe even a fully common language

— the political issues are something else entirely, of course

« We can avoid greater RDF/TM incompatibilities than necessary
— the two communities can work together, for once
— less to learn for people dealing with both

 Implementing tolog on top of RDF is easy

http://www.ontopia.net 38

topia
7
tolog can query the RM

« The RM notion of an assertion is very close to the notion of a
predicate

— the Berlin paper used the term “statement” to explain how topic maps could
be mapped to the predicates used to query them

 This means that the SAM-specific parts of tolog would really be the
SAM module

— admittedly this depends on how we support scope
« We can have our cake, and eat it, too!
— we can go with SAM now
— we could add an RM module later, when the RM is ready for it
— the language core and other modules will be common
« This means we can move forward now, but remain future-proof

http://www.ontopia.net 39

topia
e
tolog can query RDBMSs

« A table maps to a predicate, with the field names as role names

— using uni for "jdbc:postgresqgl:net///university" as sql
select SNAME, $ADDRESS from
uni:employee($NAME : name, $ADDRESS : address, $DEPID : depid),
uni:department('research' : name, $DEPID : id)?

 In SQL, this would be

— select NAME, EMPLOYEE.NAME
from EMPLOYEE, DEPARTMENT
where DEPARTMENT.NAME = 'research' AND
DEPARTMENT.ID = EMPLOYEE.DEPID;

http://www.ontopia.net 40

topia
_
tolog — the universal query language

- In fact, tolog can query anything!
— Datalog-like query languages for XML already exist (like BECHAMEL)
« In truth, it's Datalog that can query anything
— tolog is just Datalog adapted to topic maps
 The benefit is, however, that tolog can turn anything into topic maps
— the potential usage area becomes very wide
— information integration, logical inferencing, ...

http://www.ontopia.net 41

http://www.ontopia.net 42

L})plc:

Do we need an XSLT for topic maps?

 There are several reasons to think so
— the most common application of topic maps is to create web portals
— most topic map applications involve a web interface somewhere
— solutions to this exist, but they are all proprietary
— visualizing topic maps by programming against an APl is hard
 To make topic maps succeed we need to
— create something that makes it easy for non-programmers to use TMs
— create a thriving open source culture for TMs
— help new technology providers see how to make use of topic maps

A standardized language for topic maps -> textual output could do
all of this

http://www.ontopia.net 43

L})plc:

Ontopia's Navigator Framework

« Ontopia has a tool called the Navigator Framework that does this

it dramatically simplifies the task of creating web applications with TMs
programmers can learn it in a day

it is based on JSP, which is inappropriate for a standard

it does not make sufficient use of tolog

it is too complex and needs a redesign

« We have created a language we call TMTL to replace it

it solves all the problems described above
| implemented it in a single night (roughly 5 hours; 567 LOC)

— we do not offer it commercially at this point

« We want to show it for two reasons
a) it illustrates the idea of embedding a query language in another language
b) we may want to standardize something like it

http://www.ontopia.net 44

topia
TMTL language features

« Basic workings are like XSLT, except there are no template rules
 New predicate introduced: name($TOPIC, $STRING)
— selects the most appropriate name for the topic
— always produces a string, but that may be “[No name]” if none is found
« <tmtl:page/> wraps the TMTL transformation
o <tmtl:if select="...">...body...</tmtl:if>
— query in 'select' is run, if there is a result the body is executed for the 1° row
— the values bound by query are available inside the element
« <tmtl:foreach select="...”>...body...</tmtl:foreach>
— exactly like <tmtl:if>, except body is executed once for each result row
* In content {$VAR} is used to output
— astring, if $VAR is a string or a locator
— an D, if VAR is a topic map object

http://www.ontopia.net 45

L})plc:

Example

<tmtl:page xmins:tmtl="http://psi.ontopia.net/tmtl/"'> <!-- topic set by context -->
<tmtl:if select="illustration(%topic%, $PICTURE)?">

</tmtl:if>
<tmtl:if select="name(%topic%, SNAME)?”’> </tmtl:if>

<tmtl:if select="instance-of(%topic%, librettist)?">

</tmtl:if>
<tmtl:if select="nom-de-plume(%topic%, SNAME)?">

</tmtl:if>
<tmtl:if select="born(%topic%, $DATE)?">

<tmtl:if select="born-in(%topic% : person, $CITY : place), name(%CITY%, SNAME)?">

</tmtl:if>
</tmtl:if>

http://www.ontopia.net 46

Optimizations

http://www.ontopia.net 47

L})plc:

Reordering clauses

 The order of clauses is immaterial
— the query produces the same result anyway

— one requirement: not and /= clauses must have all variables bound before
you can go there

 The order affects performance, however

— if the first clause produces many matches that means more work for the
second clause, and so on...

— putting a clause that produces few matches first means less work throughout
the evaluation

 The OKS and TM4J in-memory implementations implement this
— the technique for doing so is described in the Berlin paper
— the SQL implementation has no need to do this

http://www.ontopia.net 48

L})plc:

Inference rule inlining

 Inference rules which are not recursive can be inlined
« Trivial example is

— employed-by($EMPLOYER, $EMPLOYEE) :-
employment($EMPLOYER : employer, SEMPLOYEE : employee)?

 When seeing this rule in a query it can be inlined

« The same applies to larger rules as well
— provided interaction with context is right, and
— there is no recursion, direct or indirect

http://www.ontopia.net 49

L})plc:

Rewriting queries

* Queries can be rewritten to use implementation-internal predicates
in certain situation
« This query is likely to be slow in big topic maps
— select count($TYPE) from
topic($TOPIC), direct-instance-of($TOPIC, $TYPE)?

* [t can be rewritten by the optimizer to use a special predicate
— select count($TYPE) from
topic-type($TYPE)?
* The rewritten version is much faster
— many inefficiences can be handled in this way
— basically a clean way to optimize special cases

http://www.ontopia.net 50

L})plc:

More techniques

« Variable merging
— merging variables and literals when there are more variables than necessary
« Orlifting
— in some cases predicates can be lifted out of or branches to the main query,
avoiding repeated execution

http://www.ontopia.net 51

Conclusions

http://www.ontopia.net 52

L})plc:

Summary

 Language has many strengths

already implemented, widely used, well understood, well tried
syntax is very concise and regular: very few features

easy to implement and easy to learn

extensible

can handle all the requirements, and some extra (like inferencing)
can be implemented efficiently, easy to optimize

builds on well-established theory and implementation experience
universal query language

 ...and some weaknesses

handling scope is tricky

result sets not topic maps

awkward use as an embedded language
some subtleties

http://www.ontopia.net 53

L})plc:

Ontopia's view

« We are very satisfied with tolog
— sufficiently that we think it is a very good candidate for TMQL
* [t needs more work, but that's what the standards process is for

http://www.ontopia.net 54

