
1http://www.ontopia.net

tolog for TMQL?

2http://www.ontopia.net

Preliminaries

3http://www.ontopia.net

tolog status

• Current version is 0.1
– can only query associations and type-instance relationship
– supports and, or, not, and inference rules
– a proposal for version 1.0 is being developed

• Three implementations
– one in-memory implementation in the OKS
– one SQL-based implementation also in the OKS
– one in-memory implementation in TM4J

• Has been in active use since 2001
– is by now well understood
– a substantial number of people have learned it
– has proven to be easy to implement, use, and learn

• Ontopia is very pleased with tolog
– several customers have chosen us because of it
– one even chose to use topic maps because of it...

4http://www.ontopia.net

The Datalog inheritance

• Datalog is a subset of Prolog, used in deductive databases
• These were a class of databases that implemented logical

inferencing on top of relational databases
• A large body of research was done on this late 80s and early 90s
• tolog is essentially Datalog for topic maps

– this means that this body of research can be applied to tolog
– we have found several valuable insights in this material already
– it also means tolog is already familiar to many people

5http://www.ontopia.net

Tutorial

6http://www.ontopia.net

The basics of tolog

• Is loosely based on the Prolog programming language

• Some features also stolen from SQL

• Basic feature: matching of predicates against topic map data

• Supports querying (selects) on
– associations
– class-instance relationships

• More features need to be added before it can become TMQL

7http://www.ontopia.net

tolog query results

• tolog does querying by matching a query against the data

• In this process variables are bound to values

• A tolog query result is basically a table with the variables as
columns and each set of matches as a row

LoreleiCatalani, Alfredo

La WallyCatalani, Alfredo

La FalceCatalani, Alfredo

EdmeaCatalani, Alfredo

DejaniceCatalani, Alfredo

NeroneBoito, Arrigo

MefistofeleBoito, Arrigo

BAQuery:
Return all composers and the operas that
they composed

composed-by($A : composer, $B: opera)

8http://www.ontopia.net

Association predicates

• General form of a predicate:
– assoctype (player1 : roletype1, player2 : roletype2)

• Association and role types are specified with topic references:
– use topic id (or another form of reference – described later)
– e.g., born-in (player1 : person, player2 : place)

• Players may be specified in two ways:
– using a variable ($name), meaning: find all matches in this position
– e.g., born-in ($A : person, $B : place)
– using a topic reference, e.g. the topic id of the player (or another form of

topic reference – described later)
– e.g., born-in (puccini : person, $B : place)

9http://www.ontopia.net

Some simple examples

• born-in($PERSON : person, $PLACE : place)?
– find all person and place role players in born-in associations

• born-in($PERSON : person, lucca : place)?
– find all people born in Lucca

• born-in(puccini : person, $PLACE : place)?
– find all places where Puccini was born (there's only one)

• born-in(puccini : person, lucca : place)?
– was Puccini born in Lucca?
– will return single empty match (true) or nothing (false)

• Note: Queries always end with '?'

10http://www.ontopia.net

Chaining predicates (AND)

• Predicates can be chained (with implicit ands)
– born-in($PERSON : person, $PLACE : place),

located-in($PLACE : containee, italy : container)?

• This query finds all the people born in Italy
– It first builds a two-column table of all born-in associations
– Then, those rows where the place is not located-in Italy are removed

• Any number of predicates can be chained

11http://www.ontopia.net

Projection

• Sometimes queries make use of temporary variables that we are
not really interested in

• The way to get rid of unwanted variables is projection

• Syntax:
select $variable (, $variable)* from
<query>?

• The query is first run, then projected down to the request
variables

12http://www.ontopia.net

Sorting

• Using the result is sometimes easier if we sort it

• Syntax:
<select>
<query>
order by $variable (, $variable)*?

• Will sort by variable in ascending lexical order

• Ascending order is the default
– To sort by descending order, append the word 'desc'

• Note that you can sort by any number of variables
– useful when one variable has many equal matches

13http://www.ontopia.net

Making use of OR

• Or allows us to specify multiple ways of finding results

• Find opera premieres by city
– { premiere($OPERA : opera, $CITY : place) |

 premiere($OPERA : opera, $THEATRE : place),
 located-in($THEATRE : containee, $CITY : container) } ?

• This is necessary because for some operas we don't know the
theatre, only the city

– some premiere associations are between operas and theatres
– others are between operas and cities

• OR has a higher order of precedence than AND

14http://www.ontopia.net

The built-in instance-of predicate

• Using select returns topics that play the role represented by the
variable (here: $CITY)

– This has nothing to do with the types of those topics
– In our case, some are cities, others are theatres, television stations and

even countries!

• We need to extract just the topics of type "city" from this list

• There is a built-in predicate that makes this easy

• instance-of has the following form:
– instance-of (instance, class)
– NOTE: the order of the arguments is significant

• Like players, instance and class may be specified in two ways:
– using a variable ($name)
– using a topic reference
– e.g. instance-of ($A, city)

15http://www.ontopia.net

Counting

• Projection has an additional feature: counting

• If you want to know which city had the most premieres, you can
tell tolog to count them

– select $CITY, count($OPERA) from
instance-of($CITY, city),
{ premiere($OPERA : opera, $CITY : city) |
 premiere($OPERA : opera, $THEATRE : theatre),
 located-in($THEATRE : containee, $CITY : city) }
order by $CITY ?

• This will collapse all rows where the city column is the same, and
counts the number of collapsed rows

16http://www.ontopia.net

Some more predicates

• In addition to instance-of tolog has two other useful predicates:

• direct-instance-of (instance, class)
– does not take account of the superclass-subclass relationship,

as instance-of does

• $A /= $B
– true if the two values are not identical
– { ..$A.. | ..$A.. }, instance-of($A, bling)

17http://www.ontopia.net

Negation

• Negation in tolog is a kind of filter

• What this means is that it can't generate matches

• You must first produce matches, and then remove with not

• People other than composers that were born in Italy:
born-in($PERSON : person, $PLACE : place),
located-in($PLACE : containee, italy : container),
not(instance-of($PERSON, composer))?

• Removes all matches where the person is a composer (or a
subclass thereof)

18http://www.ontopia.net

Inference rules

• Enable the query language to deduce new facts that are implied by the
information already in the topic map

• For example, if a composer 'X' wrote an opera to a libretto based on a
work by writer 'Y', one can imply an “inspired by” relationship

• Example:
inspired-by($X, $Y) :-
 composed-by($X : composer, $OPERA : opera),
 based-on($OPERA : result, $WORK : source),
 written-by($WORK : work, $Y : writer).

• Use:
 inspired-by($A, hugo)?

19http://www.ontopia.net

Ways of referring to topics

• So far we have always used topic IDs to refer to topics
– topic ID

• requires topic to be defined in top document
• if not, use source locator

• There are a number of alternatives:
– object ID

• syntax: @342231
• always works, but hard to read and write and not stable across different versions

of the topic map and (possibly) the OKS
• fine for dynamic use in applications

– source locator
• syntax: s"file.xtm#type" (like fully qualified IDs)

– subject indicator
• syntax: i"http://psi..." (most stable – independent of internal IDs)

– subject address
• syntax: a"http://www..." (also stable)

20http://www.ontopia.net

Proposed extensions

21http://www.ontopia.net

Occurrence predicates

• These allow occurrence types to be used as predicates:
– homepage($COMPANY, $URI)?
– birthdate($PERSON, $DATE)?

• This also means that string literals are necessary for queries like
– birthdate($PERSON, “1973-25-12”)?

22http://www.ontopia.net

Comments

• For non-trivial rules files one quickly finds a need for comments
– introductory text at the beginning of the file
– explanation of what the different inference rules do
– commenting out code

• Proposal
– '%' starts a comment which extends to the end of the line
– '%' inside a string does not start a comment

• Rationale
– this is the Prolog and Datalog syntax for comments

23http://www.ontopia.net

Non-binding clauses

• Sometimes you want to include a clause to get a particular value,
not as an inclusion criterion

• We want all companies based in Oslo and their home pages
– located-in($COMPANY : located, oslo : location),

homepage($COMPANY, $HOMEPAGE)?

• We won't get companies based in Oslo which have no home page,
but that's wrong

• Proposed solution:
– located-in($COMPANY : located, oslo : location),

{ homepage($COMPANY, $HOMEPAGE) }?

• Rationale:
– can be interpreted as if there were an empty or branch that always succeeds
– no extra characters or constructs needed

24http://www.ontopia.net

Introspective queries

• The constructs provided so far can only be used when all types are
known

• Queries like the following cannot be formulated
– find all association types in this topic map
– find all role types used in more than one association type
– find all occurrence types
– find all topics used as scopes which are not role types

• To achieve this we propose a set of predicates based on the SAM
• Two possible approaches

– #1: one predicate per information item type
• each predicate has one keyword argument per property (almost)

– #2: one predicate per property (pretty much)
• each predicate has one or two arguments

25http://www.ontopia.net

Approach #1

• Find all association types in this topic map
– association($TYPE : type)?

• All role types used in more than one association type
– association-role($TYPE : type, $ASSOC1 : association),

association-role($TYPE : type, $ASSOC2 : association),
association($ASSOC1 : association, $ATYPE1 : type),
association($ASSOC2 : association, $ATYPE2 : type),
$ATYPE1 /= $ATYPE2?

• All occurrence types
– occurrence($TYPE : type)?

• All topics used as scopes but not as role types
– { association($SCOPE : scope) | basename($SCOPE : scope) | ... },

element($SCOPE, $THEME),
not(association-role($THEME : type))?

26http://www.ontopia.net

Approach #2

• Find all association types in this topic map
– select $TYPE from type($ASSOC, $TYPE), association($ASSOC)?

• All role types used in more than one association type
– role($ASSOC1, $ROLE1), type($ROLE1, $TYPE),

role($ASSOC2, $ROLE2), type($ROLE2, $TYPE),
type($ASSOC1, $ATYPE1), type($ASSOC2, $ATYPE2),
$ATYPE1 /= $ATYPE2?

• All occurrence types
– select $TYPE from occurrence($TOPIC, $OCC), type($OCC, $TYPE)?

• All topics used as scopes but not as role types
– select $THEME from

scope($CHARACTERISTIC, $SCOPE),
element($SCOPE, $THEME),
not(role($ASSOC, $ROLE), type($ROLE, $THEME))?

27http://www.ontopia.net

Problems with existing tolog

• Referring to topics with URIs is now very painful
– URIs are long and awkward and must now be spelled out in full every time

• Name collisions
– if one of your IDs clash with the built-in predicates you must use URIs
– if you have a lot of inference rules they can clash with each other, with IDs,

and with built-in predicates

• Flat namespace limits number of predicates
– if predicates for strings, numbers, dates, ... are to be introduced chances of

collisions increase
– similarly, having large numbers of inference rules becomes difficult

28http://www.ontopia.net

Solution: prefixes and modules

• Declaring prefixes which are bound to namespaces solves this
– using xtm for "http://www.topicmaps.org/xtm/1.0/core.xtm#" as identifier

select $TOP from
xtm:superclass-subclass($TOP : xtm:superclass, $SUB : xtm:subclass),
not(xtm:superclass-subclass($SUP : xtm:superclass, $TOP : xtm:subclass))?

• Alternatives for the 'as' part are
– identifier: use URI as subject identifier
– subject: use URI as subject address
– source: use URI as source locator
– uri: use URI as prefix for a URI literal
– module: load rules file from the URI

• The language can define built-in modules identified by URI
– these are treated as if they were rules files, but don't need to be loaded
– instead, query engines can recognize the URIs

29http://www.ontopia.net

A string module?

• A built-in string module could provide predicates like
– string:upper($IN, $OUT), string:lower($IN, $OUT), string:title($IN, OUT)
– string:concat($IN1, $IN2, $OUT)
– string:starts-with($STR, $SUB), string:contains($STR, $SUB)
– string:substring($STR, $OUT, start, end?)
– string:length($STR, $LEN)
– string:sub-before($STR, $SUB, $OUT), string:sub-after($STR, $SUB, $OUT)

• Note that not all arguments here can bind new values
– string:length($STR, 5) would logically give all strings of length 5, but should

be considered an error unless $STR is bound by some other predicate

30http://www.ontopia.net

More extensions

• To make this work we'll need
– numbers, and a syntax for numeric literals
– the == operator
– probably also <, <=, >, >= operators
– possibly also operators for basic arithmetic (+, -, *, /)

• Clearly we can, if we want, also put in modules for
– regular expressions
– date operations
– pretty much anything you can imagine

• The language is extensible through the addition of modules and
predicates

– this means we can grow it as we want; the basic model can remain the same
– it also leaves room for proprietary extension in a controlled way

31http://www.ontopia.net

Modifications

• Can be done through the addition of predicates which modify the
topic map

• Must be added with care, as modification introduces time
– order of evaluation suddenly matters

• Delete
– instance-of($PERSON, bad-person), delete($PERSON)?

• Update
– basename(london, $NAME), set-value($NAME, 'London')?

• Addition
– add-basename(london, 'Londinum', $NAME), add-theme($NAME, latin)?

32http://www.ontopia.net

The consequences of modules

• tolog can be made to consist of parts
– the language core, defining the evaluation model, the concept of predicates,

and the module system
– modules can be added for different purposes, as needed
– the topic mappiness of tolog can be made to reside in a particular module

• This allows great flexibility in the language design
– and, not to forget, in the evolution of the language

33http://www.ontopia.net

Weaknesses

• Not sure how to handle scope
– a special / operator on the predicate level?
– by introducing support for sets?
– by a special clause at the end: SELECT ... FROM ... IN SCOPE ...?

• Association syntax is verbose
– not clear how to shorten it; convenience rules may be one solution

• Result sets are not topic maps
– can add the ability to interpret them as such, however

• Association role handling is subtle
– tricky to get right, understand, and implement

• Using ID is not the best solution
– very concise and natural, but doesn't work in all cases
– generalization to source locators and prefixes improves on this

34http://www.ontopia.net

Integration in context

• One of the main reasons to have a query language is to allow its
use in various contexts

– in languages built on top of the query language (XSLT, Schematron, mapping
files, ...)

– in programming languages etc

• tolog is not straighforward to integrate in this way
• A functional language that returns a result as a set is easier

– XPath works this way, which makes it very easy to embed
– a functional language does not fit topic maps very well, however

• As will be shown, tolog can be used this way

35http://www.ontopia.net

Relationship to other standards

36http://www.ontopia.net

The RDF QLs

• It turns out that most RDF QLs are Datalog-like
– not all choose a pure Datalog-like approach; some only have a Datalog core

• RDQL
– SELECT ?givenName

WHERE (?y, <vCard:Family>, "Smith") ,
 (?y, <vCard:Given>, ?givenName)

USING vCard FOR <http://www.w3.org/2001/vcard-rdf/3.0#

• RQL
• RIL
• ???

37http://www.ontopia.net

tolog can query RDF

• By adding a new kind of 'as' keyword tolog can query RDF
• A cross TM/RDF query:

– using foaf for "http://xmlns.com/foaf/0.1/" as rdf
 xc for "http://psi.ontopia.net/xmlconf/#" as indicator

select $B from
foaf:mbox($A, "mailto:larsga@ontopia.net"),
foaf:knows($A, $B),
foaf:mbox($B, $BMAIL),
xc:email($BTM, $BMAIL),
xc:employed-by($BTM : xc:employee, $C : xc:employer),
xc:homepage($C, "http://www.empolis.com")?

• Note the use of the email address to do the join across the TM/RDF
boundary

38http://www.ontopia.net

Consequences

• tolog can be used to do RDF/TM integration in applications
• It is technically possible to create a common RDF/TM query

language core, maybe even a fully common language
– the political issues are something else entirely, of course

• We can avoid greater RDF/TM incompatibilities than necessary
– the two communities can work together, for once
– less to learn for people dealing with both

• Implementing tolog on top of RDF is easy

39http://www.ontopia.net

tolog can query the RM

• The RM notion of an assertion is very close to the notion of a
predicate

– the Berlin paper used the term “statement” to explain how topic maps could
be mapped to the predicates used to query them

• This means that the SAM-specific parts of tolog would really be the
SAM module

– admittedly this depends on how we support scope

• We can have our cake, and eat it, too!
– we can go with SAM now
– we could add an RM module later, when the RM is ready for it
– the language core and other modules will be common

• This means we can move forward now, but remain future-proof

40http://www.ontopia.net

tolog can query RDBMSs

• A table maps to a predicate, with the field names as role names
– using uni for "jdbc:postgresql:net///university" as sql

select $NAME, $ADDRESS from
uni:employee($NAME : name, $ADDRESS : address, $DEPID : depid),
uni:department('research' : name, $DEPID : id)?

• In SQL, this would be
– select NAME, EMPLOYEE.NAME

from EMPLOYEE, DEPARTMENT
where DEPARTMENT.NAME = 'research' AND

 DEPARTMENT.ID = EMPLOYEE.DEPID;

41http://www.ontopia.net

tolog – the universal query language

• In fact, tolog can query anything!
– Datalog-like query languages for XML already exist (like BECHAMEL)

• In truth, it's Datalog that can query anything
– tolog is just Datalog adapted to topic maps

• The benefit is, however, that tolog can turn anything into topic maps
– the potential usage area becomes very wide
– information integration, logical inferencing, ...

42http://www.ontopia.net

TMTL

43http://www.ontopia.net

Do we need an XSLT for topic maps?

• There are several reasons to think so
– the most common application of topic maps is to create web portals
– most topic map applications involve a web interface somewhere
– solutions to this exist, but they are all proprietary
– visualizing topic maps by programming against an API is hard

• To make topic maps succeed we need to
– create something that makes it easy for non-programmers to use TMs
– create a thriving open source culture for TMs
– help new technology providers see how to make use of topic maps

• A standardized language for topic maps -> textual output could do
all of this

44http://www.ontopia.net

Ontopia's Navigator Framework

• Ontopia has a tool called the Navigator Framework that does this
– it dramatically simplifies the task of creating web applications with TMs
– programmers can learn it in a day
– it is based on JSP, which is inappropriate for a standard
– it does not make sufficient use of tolog
– it is too complex and needs a redesign

• We have created a language we call TMTL to replace it
– it solves all the problems described above
– I implemented it in a single night (roughly 5 hours; 567 LOC)
– we do not offer it commercially at this point

• We want to show it for two reasons
a) it illustrates the idea of embedding a query language in another language
b) we may want to standardize something like it

45http://www.ontopia.net

TMTL language features

• Basic workings are like XSLT, except there are no template rules
• New predicate introduced: name($TOPIC, $STRING)

– selects the most appropriate name for the topic
– always produces a string, but that may be “[No name]” if none is found

• <tmtl:page/> wraps the TMTL transformation
• <tmtl:if select=”...”>...body...</tmtl:if>

– query in 'select' is run, if there is a result the body is executed for the 1st row
– the values bound by query are available inside the element

• <tmtl:foreach select=”...”>...body...</tmtl:foreach>
– exactly like <tmtl:if>, except body is executed once for each result row

• In content {$VAR} is used to output
– a string, if $VAR is a string or a locator
– an ID, if $VAR is a topic map object

46http://www.ontopia.net

Example

<tmtl:page xmlns:tmtl="http://psi.ontopia.net/tmtl/"> <!-- topic set by context -->
 <tmtl:if select="illustration(%topic%, $PICTURE)?">

 </tmtl:if>
 <tmtl:if select=”name(%topic%, $NAME)?”><h1>{$NAME}</h1></tmtl:if>
 <p>Italian composer
 <tmtl:if select="instance-of(%topic%, librettist)?">
 and librettist
 </tmtl:if>.
 <tmtl:if select="nom-de-plume(%topic%, $NAME)?">
 Also known as {$NAME}.
 </tmtl:if>
 <tmtl:if select="born(%topic%, $DATE)?">
 Born {$DATE}
 <tmtl:if select="born-in(%topic% : person, $CITY : place), name(%CITY%, $NAME)?">
 in {$NAME}
 </tmtl:if>.
 </tmtl:if>

47http://www.ontopia.net

Optimizations

48http://www.ontopia.net

Reordering clauses

• The order of clauses is immaterial
– the query produces the same result anyway
– one requirement: not and /= clauses must have all variables bound before

you can go there

• The order affects performance, however
– if the first clause produces many matches that means more work for the

second clause, and so on...
– putting a clause that produces few matches first means less work throughout

the evaluation

• The OKS and TM4J in-memory implementations implement this
– the technique for doing so is described in the Berlin paper
– the SQL implementation has no need to do this

49http://www.ontopia.net

Inference rule inlining

• Inference rules which are not recursive can be inlined
• Trivial example is

– employed-by($EMPLOYER, $EMPLOYEE) :-
employment($EMPLOYER : employer, $EMPLOYEE : employee)?

• When seeing this rule in a query it can be inlined
• The same applies to larger rules as well

– provided interaction with context is right, and
– there is no recursion, direct or indirect

50http://www.ontopia.net

Rewriting queries

• Queries can be rewritten to use implementation-internal predicates
in certain situation

• This query is likely to be slow in big topic maps
– select count($TYPE) from

topic($TOPIC), direct-instance-of($TOPIC, $TYPE)?

• It can be rewritten by the optimizer to use a special predicate
– select count($TYPE) from

topic-type($TYPE)?

• The rewritten version is much faster
– many inefficiences can be handled in this way
– basically a clean way to optimize special cases

51http://www.ontopia.net

More techniques

• Variable merging
– merging variables and literals when there are more variables than necessary

• Or lifting
– in some cases predicates can be lifted out of or branches to the main query,

avoiding repeated execution

52http://www.ontopia.net

Conclusions

53http://www.ontopia.net

Summary

• Language has many strengths
– already implemented, widely used, well understood, well tried
– syntax is very concise and regular: very few features
– easy to implement and easy to learn
– extensible
– can handle all the requirements, and some extra (like inferencing)
– can be implemented efficiently, easy to optimize
– builds on well-established theory and implementation experience
– universal query language

• ...and some weaknesses
– handling scope is tricky
– result sets not topic maps
– awkward use as an embedded language
– some subtleties

54http://www.ontopia.net

Ontopia's view

• We are very satisfied with tolog
– sufficiently that we think it is a very good candidate for TMQL

• It needs more work, but that's what the standards process is for

