

The Q model

A unifying model for RDF and Topic Maps

Lars Marius Garshol

Development Manager, Ontopia <larsga@ontopia.net>

2005-08-02

RDF and Topic Maps

The Saga Continues...

Lars Marius Garshol

Development Manager, Ontopia <a>larsga@ontopia.net>

2005-08-02

The goal

- To create a formal model, Q, such that
 - any TMDM instance can be transformed into a Q instance with no loss of information
 - any RDF model can be transformed into a Q instance with no loss of information
 - TMDM and RDF have the *same* representation in Q
 - the model must also be efficiently implementable
- If this were achieved, it would mean that
 - a single model could serve as the basis for combined RDF/TM implementations
 - also for common RDF/TM query languages
 - OWL/RDFS semantics could be ported to it

Enough already! Why don't you just use RDF instead of this Q thing?

Representing Topic Maps in RDF

And why it's not the way to go

Representing Topic Maps in RDF

- Topic Maps are higher-level than RDF
 - that is, Topic Maps have more built-in semantics than RDF triples do
 - to put it another way, RDF is simpler than Topic Maps
- Therefore, it makes more sense to represent Topic Maps in RDF than the other way around
 - the direct approach would produce what the W3C survey¹ calls an *object mapping*
- One attempt at such a representation was made at a nocturne at Knowledge Technologies 2002 in Seattle²
 - later written up and published by yours truly
- Anne Cregan just presented another attempt at the same
 - her representation is more up-to-date, and uses OWL
 - however, the same issues apply to both

¹http://www.w3.org/TR/rdftm-survey/ ²http://psi.ontopia.net/rdf/

Representing Topic Maps in RDF (2)

• The following LTM

[lmg = "Lars Marius Garshol"] dc:creator(lmg : dc:value, q-model : dc:resource)

• would with this approach turn into the following RDF

- (some detail omitted)

Problem #1: It's not natural

Why do we care about naturalness, anyway?

• Because if Topic Maps information is represented in this way, then

- you can't use RDFS/OWL to constrain your domain vocabulary
- that is, you can model Topic Maps with RDFS/OWL, but not also your domain
- it doesn't merge with native RDF information, which uses domain vocabularies
- queries have to be formulated differently for Topic Maps information and native RDF information on the same subject
- and so on...
- In short, an object mapping isn't sufficient for interoperability
 - you'll always need some form of transformation on the RDF side in order to match up with real RDF data

Problem #2: It's bloated

- The Italian Opera Topic Map has
 - 1339 topics, 2411 associations, 1077 occurrences = 4827 TAOs
- In the 2002 RDF object mapping, this becomes 52673 RDF triples
 - ie, 11 times the TAO count
 - it can be reduced, but not very substantially
- For the mondial.xtm topic map you need 288457 RDF triples
 - that makes it a very big model, but the topic map isn't *that* big
- Clearly, this is just too voluminous

So why not make it slim and natural?

- Why can't we just use a single RDF statement for the base name?
- Because in topic maps you also need to represent
 - the scope of the base name
 - the variant(s) of the base name, if any
 - the topic reifying the base name, if any
- In RDF there are only two choices:
 - use reification
 - can get us much closer to natural RDF
 - but causes bloat, since 5 triples are needed for reification
 - use a blank node for the base name (this was the approach taken on slide 7)

• But, what if there were a way to make reification compact?

The Q4 model

A naïve approach

The basic idea of Q4

• We extend the triples of RDF with one more element

- that new element represents the identity of the statement
- (subject, property, statement-id, object)
- this means that we can compactly represent reification, which means we can also represent topic maps in a compact way

The model then works as follows

- it's a set of quads
- the third element of each quad must be unique
- you can't have the same quad twice with different statement IDs (no duplicates)
- a quad identity cannot be used as a predicate

A little formality

• *I* is the set of all identifiers

- an identifier is just an opaque token
- it doesn't mean anything by itself, it just identifies something

• *L* is the set of all literals

- these are data values like strings, integers, URIs, etc
- *A* is the union of *I* and *L*
- A model is a subset of (I x I x I x \mathcal{A})
- q[n] produces the n'th element of q if q is a quad
- The paper introduces more helper functions
 - these are used to define the return mapping from Q to TMDM and RDF

Representing Topic Maps in Q4

• The following LTM

[Img = "Lars Marius Garshol" = "LMG" / acronym]
{Img, homepage, "http://www.garshol.priv.no"}

• would turn into the following in Q4:

(Img, basename, b1, "Lars Marius Garshol") (b1, scope, _, acronym) (Img, homepage, _, "http://www.garshol.priv.no")

Is this it?

• The bloat is gone

- just 22382 quads (4.6x TAO) for opera.xtm
- with simple tricks, this is reducible to 11394 (2.4x TAO)
- for mondial.xtm: 109737 quads, reducible to 43901 quads
- Also, RDF and topic maps mostly have the same, natural, representation
- However, lots of difficulties remain
 - we'll walk through and study the problems one by one

Problem #1: Associations

- Associations in topic maps and RDF are not aligned here
- Binary relationships in RDF are a single quad
 - (Img, dc:creator, _, q)
- Binary relationships in topic maps have one quad per role
 - (assoc, type, _, created-by)
 - (assoc, creator, _, lmg)
 - (assoc, creation, _, q)

Solution #1

- Treat binary relationships in RDF as having two "roles"
 - (r, type, _, dc:creator)
 - (r, subject, _, lmg)
 - (r, object, _, q)
- This is formally OK, but now we're back with a bloated model
 - not good for implementation

Solution #2

- Use "association templates"
- That is, for each (association type, role type 1, role type 2) combination, create an identifier, and use that

Like this

- (Img, created-by-template, _, q)
- (created-by-template, type, _, created-by)
- (created-by-template, subject-role, _, creator)
- (created-by-template, subject-role, _, creation)

This gets rid of the bloat

- however, association role reification is no longer representable
- we can't define tolog on top of this, either

Problem #2: Language tags

• String literals in RDF can have language tags attached to them

- strangely, these are RFC 3066 code strings rather than resources
- effectively, this qualifies the literal, saying which language it's appropriate in

• This is a common use for scope in topic maps

- therefore: represent language tags as though they were scope
- turn each language code into a URI in a particular namespace
- (because scope must consist of topics...)

Problem #3: Identifying URIs

- In RDF, a URI can only be attached to a node in one way
 - but it can mean two different things
- In Topic Maps, a URI can be attached to a node in two ways
 - the same two semantics still apply, of course
- So, how to approach this?
 - the naïve approach is to define two Q-properties
 - however, this causes a mismatch between RDF and Topic Maps in Q

Solution

- the property distinction really captures type information
- capture the type separately, and use only one property
- in RDF the type information must be added in order for a Topic Maps mapping to be possible
- (this is in any case necessary to distinguish between names, occurrences, and associations)

Problem #4: Duplicates

Consider the following topic map:

- [fish = "Fish" = "Fisk" / norwegian = "Fisk" / swedish]

• This gives the following in Q4:

(fish, TOPIC_NAME, _, "Fish")
(fish, TOPIC_NAME, s1, "Fisk") ◄
(s1, SCOPE, _, norwegian)
(fish, TOPIC_NAME, s2, "Fisk") ◄
(s2, SCOPE, _, swedish)

- However, the two "Fisk" topic names give us duplicate statements (s1 and s2)
 - this violates the "no duplicates" constraint
 - however, we can't merge s1 and s2, because in topic maps these are reifiable separately, and have separate variants
 - the same applies in RDF

• This requires a radical solution...

The Q model

The real thing, at last

The Q model

• We go from quads to quints

- (subject, predicate, statement-id, context, object)
- The "context" is used to represent scope in topic maps
 - scope can consist of multiple topics
 - therefore, quints are used to attach the scoping topics to the context node
- The same rules as before apply, but the no duplicate rule now takes context into account

• Our previous example then becomes

(Img, basename, b1, c1, "Lars Marius Garshol")
(c1, scope, _, Q, acronym)
(Img, homepage, _, U, "http://www.garshol.priv.no")

• The size is now even more reduced

- 8551 quints (1.8x TAO) for opera.xtm
- 43731 quints for mondial.xtm

Some example data

[Img = "Lars Marius Garshol"]

{Img, homepage, "http://www.garshol...."}
creator-of(Img : creator, q : creation)

:Img foaf:name "Lars M... Garshol" .:Img foaf:homepage "http://www..." .:Img dc:creator :q .

(Img, basename, _, U, "Lars Marius ...") (Img, homepage, _, U, "http://...") (Img, t-creator-of, _, U, q) (homepage, meta_type, _, U, occurrence) (t-creator-of, meta_type, _, U, association) (Img, foaf:name, _, U, "Lars Marius ...") (Img, foaf:homepage, _, U, "http://...") (Img, dc:creator, _, U, q)

Applications of Q

Possible applications

- Dual RDF/TM implementations
- Common model theory for both
- Mechanism to apply RDFS/OWL inferencing to Topic Maps
- TMQL/SPARQL mappings
- etc

Actual applications

- mathematically formulated theory of scope (in progress; unpublished)
- formal specification for tolog query language (in progress; accepted for TMRA'05)
- efficient topic maps backends (in progress; very rough)

Specifying tolog on top of Q

- We define a single predicate that is not visible in the language
 - _q(subj, pred, id, ctxt, obj)
- We then use this to define the built-in predicates
 - topic-name(\$TOPIC, \$NAME) : _q(\$TOPIC, \$P, \$NAME, _, _),
 _q(\$P, meta-type, _, _, topic-name).
- We map dynamic association predicates down to built-in predicates
- The same for dynamic occurrence predicates
- Finally, we need to define result sets, AND, OR, NOT, etc
 - however, Q does the heavy lifting with the complex Topic Maps model

The scope theory

• Defines two functions:

- b(M, i): models belief
 - produces the subset of the model that we believe if we believe *i*
- d(M, i): models disbelief
 - produces the subset of the model that we believe if we only disbelieve *i*

• These satisfy for all models M:

- b(M, I) = M
- $b(M, \emptyset) = f(M, *, *, *, U, *)$
- $d(M, \emptyset) = b(M, I) = M$
- d(M, I) = b(M, Ø)

The actual functions

- b(M, s) = { q in M | forall t in f(M, con(q), scope, *, *, *)[5] : t in s }
- d(M, s) = { q in M | not exists t in f(M, con(q), scope, *, *, *)[5] : t in s}

How to use RDFS/OWL with Topic Maps

- The basic problem is that RDFS/OWL don't understand scope
 - that is, if two statements Y and Z are needed to conclude X, but Y and Z are present with different scopes, then X is not necessarily valid
- A possible solution is (possibly) to extend the scope theory
 - the extension will be a function that creates a set of scopeless models, each of which corresponding to a scope in the model, and containing all the source quints that are known to be valid in that scope
 - obviously, some quints may appear in more than one submodel
- Normal RDFS/OWL inferencing can then be done on each submodel
 - this will extend the submodel with the quints known to be true in that scope for that submodel
- The 48,000\$ question is
 - can this be done efficiently for all scopes at once, or just one?

More information

- Read the paper
- Email <larsga@ontopia.net>