
http://www.ontopia.net/© 2006 Ontopia AS 1

Practical TMRAPping
A tutorial

Lars Marius Garshol
CTO, Ontopia
<larsga@ontopia.net>

http://www.ontopia.net/© 2006 Ontopia AS 2

Agenda

• Introduction
– use cases
– status

• Understanding TMRAP
– the basics
– the requests

• The HTTP binding
– examples

• TM/XML
– examples

• The HTTP binding
– examples

http://www.ontopia.net/© 2006 Ontopia AS 3

What you will learn

• This tutorial assumes you already know
– Topic Maps
– tolog
– XTM and LTM
– HTTP and Web Services in general

• It will teach you
– how TMRAP works conceptually
– how to work with the returned XML data

• It will not teach you
– how to do client programming
– this will depend on your environment...

http://www.ontopia.net/© 2006 Ontopia AS 4

Introduction

Use cases

Status

http://www.ontopia.net/© 2006 Ontopia AS 5

The Vizigator

• The Vizigator uses TMRAP
– the Vizlet runs in the browser (on the client)
– a fragment of the topic map is downloaded from the server
– the fragment is grown as needed

Server
TMRAP

http://www.ontopia.net/© 2006 Ontopia AS 6

CMS integration

• TMRAP can be used to integrate CMSs that are not Java-based
– events in the CMS trigger update requests to the TMRAP server
– the end-user interface retrieves Topic Maps data via TMRAP

TMRAP server

Editorial system

Publishing system

CMS server

Other input

http://www.ontopia.net/© 2006 Ontopia AS 7

Building temporary topic maps

• The Amsterdam police has built a prototype of this
– investigators can use TMRAP to extract related fragments from various

systems
– these are integrated into a single, temporary topic map that can be browsed

to see the connections

Browsing
application

Backend
system

Backend
system

Backend
system

http://www.ontopia.net/© 2006 Ontopia AS 8

Towards seamless knowledge

• As the number of portals multiplies, the amount of overlap increases…

• Take these three portals as an example:

• forskning.no (Research Council web site aimed at young adults)

• forbrukerportalen.no (Public site of the Norwegian Consumer Association)

• matportalen.no (Biosecurity portal of the Department of Agriculture)

Genetically modified food at forskning.no

Genetically modified food at Forbukerrådet

Genetically modified foodstuffs at Matportalen

http://www.ontopia.net/© 2006 Ontopia AS 12

Three semantic portals – One common subject

 one “virtual portal”
with seamless navigation in all directions

http://www.ontopia.net/© 2006 Ontopia AS 13

Current status

• TMRAP implemented in the OKS
– implementation not 100% complete
– extended as needed
– was partly extended for this tutorial (to be released in OKS 3.2)

• Other applications built based on TMRAP
– Vizigator
– TMBuilder (by Cerpus)
– Amsterdam Police prototype
– ...

• No other implementations at the moment

http://www.ontopia.net/© 2006 Ontopia AS 14

TMRAP

Basics

Understanding TM/XML

The requests

http://www.ontopia.net/© 2006 Ontopia AS 15

TMRAP basics

• Abstract interface
– that is, independent of any particular technology
– coarse-grained operations, to reduce network traffic

• Protocol bindings exist
– plain HTTP binding
– SOAP binding

• Supports many syntaxes
– XTM 1.0
– LTM
– TM/XML
– custom tolog result-set syntax

http://www.ontopia.net/© 2006 Ontopia AS 16

TM/XML

• Non-standard XML syntax for Topic Maps
– defined by Ontopia (presented at TMRA’05)
– implemented in the OKS

• XSLT-friendly
– much easier to process with XSLT than XTM
– can be understood by developers who do not understand Topic Maps
– dynamic domain-specific syntaxes instead of generic syntax
– predictable (can generate XML Schema from TM ontology)

http://www.ontopia.net/© 2006 Ontopia AS 17

get-topic

• Retrieves a single topic from the remote server
– topic map may optionally be specified
– syntax likewise

• Main use
– to build client-side fragments into a bigger topic map
– to present information about a topic on a different server

http://www.ontopia.net/© 2006 Ontopia AS 18

get-topic

• Parameters
– identifier: a set of URIs (subject identifiers of wanted topic)
– subject: a set of URIs (subject locators of wanted topic)
– item: a set of URIs (item identifiers of wanted topic)
– topicmap: identifier for topic map being queried
– syntax: string identifying desired Topic Maps syntax in response
– view: string identifying TM-Views view used to define fragment

• Response
– topic map fragment representing topic in requested syntax
– default is XTM fragment with all URI identifiers, names, occurrences, and

associations
– in default view types and scopes on these constructs are only identified by

one <*Ref xlink:href=“...”/> XTM element
– the same goes for associated topics

http://www.ontopia.net/© 2006 Ontopia AS 19

Syntax identifiers

• XTM 1.0 application/x-xtm

• LTM text/x-ltm

• AsTMa= text/x-astma

• TM/XML text/x-tmxml

• tolog text/x-tolog

http://www.ontopia.net/© 2006 Ontopia AS 20

get-topic-page

• Returns link information about a topic
– that is, where does the server present this topic
– mainly useful for realizing the portal integration scenario
– result information contains metadata about server setup

http://www.ontopia.net/© 2006 Ontopia AS 21

get-topic-page

• Parameters
– identifier: a set of URIs (subject identifiers of wanted topic)
– subject: a set of URIs (subject locators of wanted topic)
– item: a set of URIs (item identifiers of wanted topic)
– topicmap: identifier for topic map being queried
– syntax: string identifying desired Topic Maps syntax in response

• Response is a topic map fragment
[oks : tmrap:server = "OKS Samplers local installation"]
[opera : tmrap:topicmap = "The Italian Opera Topic Map"]
 {opera, tmrap:handle, [[opera.xtm]]}
tmrap:contained-in(oks : tmrap:container, opera : tmrap:containee)
tmrap:contained-in(opera : tmrap:container, view : tmrap:containee)
tmrap:contained-in(opera : tmrap:container, edit : tmrap:containee)
[view : tmrap:view-page %"http://localhost:8080/omnigator/models/..."]
[edit : tmrap:edit-page %"http://localhost:8080/ontopoly/enter.ted?..."]
[russia = "Russia” @"http://www.topicmaps.org/xtm/1.0/country.xtm#RU"]

http://www.ontopia.net/© 2006 Ontopia AS 22

get-tolog

• Returns query results
– main use is to extract larger chunks of the topic map to the client for

presentation
– more flexible than get-topic
– can achieve more with less network traffic

http://www.ontopia.net/© 2006 Ontopia AS 23

get-tolog

• Parameters
– tolog: tolog query
– topicmap: identifier for topic map being queried
– syntax: string identifying desired syntax of response
– view: string identifying TM-Views view used to define fragment

• Response
– if syntax is “tolog”

• an XML representation of the query result
• useful if order of results matter

– otherwise, a topic map fragment containing multiple topics is returned
• as for get-topic

http://www.ontopia.net/© 2006 Ontopia AS 24

add-fragment

• Adds information to topic map on the server
– does this by merging in a fragment

• Parameters
– fragment: topic map fragment
– topicmap: identifier for topic map being added to
– syntax: string identifying syntax of request fragment

• Result
– fragment imported into named topic map

http://www.ontopia.net/© 2006 Ontopia AS 25

update-topic

• Can be used to update a topic
– add-fragment only adds information
– update sets the topic to exactly the uploaded information

• Parameters
– topicmap: the topic map to update
– fragment: fragment containing the new topic
– syntax: syntax of the uploaded fragment
– identifier: a set of URIs (subject identifiers of wanted topic)
– subject: a set of URIs (subject locators of wanted topic)
– item: a set of URIs (item identifiers of wanted topic)

• Update happens using TMSync
– to learn more about this, attend my talk tomorrow (1430-1500)

http://www.ontopia.net/© 2006 Ontopia AS 26

delete-topic

• Removes a topic from the server

• Parameters
– identifier: a set of URIs (subject identifiers of wanted topic)
– subject: a set of URIs (subject locators of wanted topic)
– item: a set of URIs (item identifiers of wanted topic)
– topicmap: identifier for topic map being queried

• Result
– deletes the identified topic

• includes all names, occurrences, and associations

http://www.ontopia.net/© 2006 Ontopia AS 27

HTTP binding

Basics

How to use

http://www.ontopia.net/© 2006 Ontopia AS 28

HTTP binding basics

• The mapping requires a base URL
– e.g http://localhost:8080/tmrap/

• This is used to send requests
– http://localhost:8080/tmrap/method?param1=value1&...
– GET is used for requests that do not cause state changes
– POST for requests that do

• Responses returned in response body

http://www.ontopia.net/© 2006 Ontopia AS 29

Exercise #1: Retrieve a topic

• Use the get-topic request to retrieve a topic from the server
– base URL is http://localhost:8080/tmrap/
– find the identifying URI in Omnigator
– just print the retrieved fragment to get a look at it

• Note: you must escape the “#” character in URIs
– otherwise it is interpreted as the anchor and not transmitted at all
– escape sequence: %23

• Note: you must specify the topic map ID
– otherwise results will only be returned from loaded topic maps
– in other words: if the topic map isn’t loaded, you get no results

http://www.ontopia.net/© 2006 Ontopia AS 30

Solution #1 (in Python)

import urllib

BASE = "http://localhost:8080/tmrap/tmrap/"

psi = "http://www.topicmaps.org/xtm/1.0/country.xtm%23RU"

inf = urllib.urlopen(BASE + "get-topic?identifier=" + psi)

print inf.read()

inf.close()

http://www.ontopia.net/© 2006 Ontopia AS 31

Solution #1 (response)

 <topicMap xmlns="http://www.topicmaps.org/xtm/1.0/"

 xmlns:xlink="http://www.w3.org/1999/xlink">

 <topic id="id458">

 <instanceOf>

 <subjectIndicatorRef xlink:href="http://psi.ontopia.net/geography/#country"/>

 </instanceOf>

 <subjectIdentity>

 <subjectIndicatorRef xlink:href="http://www.topicmaps.org/xtm/1.0/country.xtm#RU"/>

 <topicRef xlink:href="file:/.../WEB-INF/topicmaps/geography.xtmm#russia"/>

 </subjectIdentity>

 <baseName>

 <baseNameString>Russia</baseNameString>

 </baseName>

 </topic>

http://www.ontopia.net/© 2006 Ontopia AS 32

Processing XTM with XSLT

• This is possible, but unpleasant
– the main problem is that the XML is phrased in terms of Topic Maps, not in

domain terms
– this means that all the XPath will talk about “topic”, “association”, ... and not

“person”, “works-for” etc

• The structure is also complicated
– this makes queries complicated
– for example, the XPath to traverse an association looks like this:

//xtm:association
 [xtm:member[xtm:roleSpec / xtm:topicRef / @xlink:href = '#employer']
 [xtm:topicRef / @xlink:href = concat('#', $company)]]
 [xtm:instanceOf / xtm:topicRef / @xlink:href = '#employed-by']

http://www.ontopia.net/© 2006 Ontopia AS 33

Learning TM/XML

How it works

http://www.ontopia.net/© 2006 Ontopia AS 34

General principles of TM/XML

• Fixed structure
– document element is topic map
– level below is topics
– level below is properties of topics
– no more levels

• Element types generated from the types of the objects
– person topics get “person” elements, etc
– PSIs turn into QNames (foo:bar)
– IDs turn into normal element type names

http://www.ontopia.net/© 2006 Ontopia AS 35

Fragment structure

<topicmap ...>

 <topic-type id=”...">

 <tm:identifier>...</tm:identifier>

 <iso:topic-name>

 <tm:value>...</tm:value>

 </iso:topic-name>

 <occurrence-type>...</occurrence-type>

 <association-type role=”role-type" topicref=”..."

 otherrole=”role-type”/>

 </geography:country>

</topicmap>

http://www.ontopia.net/© 2006 Ontopia AS 36

Exercise #2: Retrieve a topic in TM/XML

• Use the get-topic request to retrieve a topic from the server
– base URL is http://localhost:8080/tmrap/
– find the identifying URI in Omnigator
– just print the retrieved fragment to get a look at it
– syntax identifier for TM/XML is “text/x-tmxml”

http://www.ontopia.net/© 2006 Ontopia AS 37

Solution #2 (in Python)

import urllib

BASE = "http://localhost:8080/tmrap/tmrap/"

psi = "http://www.topicmaps.org/xtm/1.0/country.xtm%23RU”

syntax = “&syntax=text/x-tmxml”

request = BASE + "get-topic?identifier=" + psi + syntax

inf = urllib.urlopen(request)

print inf.read()

inf.close()

http://www.ontopia.net/© 2006 Ontopia AS 38

Solution #2 (response)

<topicmap ...>
 <geography:country id="id458">
 <tm:identifier>http://www.topicmaps.org/xtm/...</tm:identifier>
 <iso:topic-name>
 <tm:value>Russia</tm:value>
 </iso:topic-name>
 <geography:located-in scope="psi.ontopia.net:geography"

role="geography:container" topicref="id345"
otherrole="geography:containee"></geography:located-in>

 <opera:takes-place-in scope="psi.ontopia.net:music
psi.ontopia.net:geography" role="geography:place"
topicref="risurrezione" otherrole="music:opera"></opera:takes-place-in>

 <!-- ... -->
</geography:country>
</topicmap>

http://www.ontopia.net/© 2006 Ontopia AS 39

Exercise #3: Presenting topics

• Make an XSLT stylesheet that presents composer topics

• Use TMRAP to get TM/XML fragments to try it out with

http://www.ontopia.net/© 2006 Ontopia AS 40

TMRAP in more depth

Understanding fragments

Using more requests

http://www.ontopia.net/© 2006 Ontopia AS 41

Understanding fragments

• The default fragments are defined as “stub”s
– this means you get the requested topic only
– all referenced topics are stubs
– this means we only have their identity; nothing more

• This is not what you want for displaying a topic
– in this case you want the names of all associated topics as well
– (otherwise you can’t display the associations)
– to do this, use “&view=names”

http://www.ontopia.net/© 2006 Ontopia AS 42

Exercise #4: Displaying topics properly

• Improve the composer stylesheet so it also displays the names of
associated topics

http://www.ontopia.net/© 2006 Ontopia AS 43

How to build a web site from this

• Write one XSLT stylesheet per topic type

• Write a script that for each topic types
– does a query to extract the identifiers of all topics of each type,
– then retrieve the fragment for each topic, and
– run the XSLT stylesheet on it

• Ensure that there is linking logic in your stylesheet that matches
the file names that your script produces

http://www.ontopia.net/© 2006 Ontopia AS 44

How you would do it for real

• In a real setting there would be an application hosted on a server
– in practice this could be ASP.NET, Zope (Python), PHP, ...

• Pages would be built dynamically
– fragments would be loaded from the topic map and presented dynamically
– caching could happen in front of the application, in front of the TMRAP

server, or both

• So many of the concerns on the previous slide would not apply
– however, to avoid having to get into the detail of a client platform we choose

a simplified approach here

http://www.ontopia.net/© 2006 Ontopia AS 45

get-tolog

• As described earlier, this request has two modes
– fragment mode, which produces a fragment (in XTM or TM/XML), and
– tolog mode, which produces an XML representation of the result set
– tolog mode is the default

• In fragment mode
– only single-column queries are allowed,
– every value must be a topic, and
– the result is a fragment containing all the queried topics

• In tolog mode
– there are no restrictions on queries, and
– a special “tolog” XML syntax is used to represent the result set

http://www.ontopia.net/© 2006 Ontopia AS 46

The “tolog” syntax

<result ...>
 <head>
 <column>COMPOSER</column>
 <column>OPERA</column>
 </head>
 <body>
 <row>
 <value>
 <x:subjectIndicatorRef
 l:href="http://en.wikipedia.org/wiki/Verdi"/>
 </value>
 <value>28</value>
 </row>

http://www.ontopia.net/© 2006 Ontopia AS 47

Exercise #5: Create a composers page

• Should list all composers by name
– get the necessary data using get-tolog
– try out both fragment mode and tolog mode

http://www.ontopia.net/© 2006 Ontopia AS 48

Performance issues

• Neither of the two approaches we’ve found so far will actually
allow us to produce the composer page + individual pages
efficiently

– with fragments: we only get the composer topics, not the names of
associated topics

– with tolog: it’s possible to get the data here, but very awkward, as we have
to explicitly ask for everything

– we need better control over what is returned

• The solution is, once again, views

http://www.ontopia.net/© 2006 Ontopia AS 49

Views supported by get-tolog

• In tolog mode
– stub the default, gives just identities of returned topics
– name gives just names of returned topics
– full produces full fragments, just like in fragment mode
– full-name also full fragments, but now including a name for associated

topics

• This allows us to return exactly the XML we need, in one operation

http://www.ontopia.net/© 2006 Ontopia AS 50

Exercise #6: Create a composer site

• With a single TMRAP request
– create an overview page of composers, plus
– one page for each composer

• This can be done with ... what ...?

http://www.ontopia.net/© 2006 Ontopia AS 51

Updating the topic map

• add-fragment
– always adds to the topic map (no existing data removed)

• update-topic
– updates the chosen topic to only have the uploaded data

• delete-topic
– removes a topic from the topic map

http://www.ontopia.net/© 2006 Ontopia AS 52

Exercise #7: Adding a new composer

• Use TMRAP to add a new composer to the topic map
– this is easiest to do with opera.hytm, because you can use IDs

http://www.ontopia.net/© 2006 Ontopia AS 53

Exercise #8: Correcting the composer

• Let’s assume we got some information about the composer
wrong, and correct it

http://www.ontopia.net/© 2006 Ontopia AS 54

Exercise #9: Covering our tracks

• And now, let’s remove this composer to clean up the topic map

http://www.ontopia.net/© 2006 Ontopia AS 55

Conclusion

Conclusion

More information

http://www.ontopia.net/© 2006 Ontopia AS 56

Conclusion

• TMRAP is a versatile generic web service interface
– not bound to the OKS, but only implemented in the OKS
– has a dependency on tolog at the moment, but could support TMQL

• Allows many different kinds of applications to be built
– pure presentation applications as well as updates

• Takes Topic Maps away from simple, monolithic applications

http://www.ontopia.net/© 2006 Ontopia AS 57

More information

• Original TMRAP vision
– Seamless Knowledge: Spontaneous Knowledge Federation using Topic

Maps (Pepper & Garshol)
– http://www.ontopia.net/topicmaps/materials/Seamless%20Knowledge%20wi

th%20TMRAP.ppt

• TMRA’05 paper
– paper: http://www.garshol.priv.no/download/text/tmrap.pdf
– slides: http://www.informatik.uni-leipzig.de/~tmra05/PRES/LMGa.pdf

• OKS documentation
– Developer’s Guide included

