TMQL

Getting started
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Agenda for the day (0900-1400)

* Introduction
— goals and requirements
— status and work remaining

* Query language presentations

— assorted attempts LMG
— AsTMa? Robert Barta
— tolog LMG

* Discussion
— find out how to move forward from here
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What we want

* A query language that
— simplifies topic map application development
— removes the need to use an API to extract information
— can help the adoption of topic maps
— play a role for topic maps similar to that of SQL in RDBMSs
— can be used in higher-level technologies
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Status of TMQL work right now

* ISO has
— decided to create TMQL as ISO 18048 (multi-part)
— appointed two editors: yours truly and Hans Holger Rath of DIN
— created a requirements document (N0249)
— started work on a use case collection
— Invited proposals for query languages

* A number of query languages have been proposed
— AsTMa? by Robert Barta
— tolog by Ontopia
— eTMQL by empolis
— Ann's LTM-based strawman
— “let's use XPath or XML Query” by multiple people
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What we want to achieve today

* Decide on the way forward
— will we create a use case collection?
— should we update the requirements document?
— how do we kick-start the work on the language itself?

* Decide how to come up with a language proposal
— select one of the languages presented today as the starting point?
— give the editors the task of creating one (or more) new proposals?

— attendees should evaluate the query languages presented and
consider how appropriate they find them
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Overview of requirements

Syntax must be concise and human-readable

Language must be defined in terms of SAM
— thus it can support XTM, HyTM, LTM, and AsTMa= at the same time

Language must be independent of usage context
Language must be properly internationalized
Language must be strictly defined

Language must have support for third-party extensions in a
controlled way

May support logical inferencing
Should be optimizable and possible to implement efficiently
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Uses of TMQL

* In applications, when extracting info from TM
— our customers use tolog in web applications, for example
— to list all students in course, query, then traverse result to output list

* Also used in auto-generation of topic maps
— specifying conditions for special processing and deletion, etc

* Could be used in topic map access protocol on the net
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Anatomy of TMQL processors
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Empolis TMQL

Examples, evaluation
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empolis TMQL

* The first topic map query language

* Implemented in their K42 product

* Designed to resemble SQL

* Uses name searches to address topics
* Could query all aspects of topic maps

e Status
— will not be developed further
— has been replaced by the eRQL RDF query language

— their new eKMS product is a “metadata service supporting both RDF
and XTM” which will use eRQL

— note: empolis remains committed to implementing ISO TMQL
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Example query

* Which operas were composed by Germans influenced by
Mozart?

* More formally
— All topics of type "Opera"
— which were composed by "Persons"
— which were influenced by "Mozart"
— and born in "Germany"
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empolis TMQL

SELECT topic x WHERE

X instance_of topic named "Opera"

AND

X in (assoc template is assoctemp named "composed by") has
topic person instance_of topic named "Person”

AND

person in (role named "influenced person") in

(assoc template is assoctemp named "influenced by") has
(role named "influencing person") has topic named "Mozart"
AND

person in (assoc template is assoctemp named "born in") has

topic named "Germany"
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Holger's evaluation of eTMQL

* Pros
— supports querying of all parts of topic maps, even regexps in names
— quite a complete set of query constructs

* Cons
— the syntax is “read-only”; hard to write, easy to read
— lacks sorting and functions on the result set
* this can of course be done in the programming language
— insufficient variable handling, e.g.

 after a variable has been given a value it cannot be further constrained

* variable pairs in SELECT are not returned as pairs, so information about
which x goes with which y is lost
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tmfun

An example query language
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tmfun

* My other attempt to create a query language
— inspired by the Ontopia Navigator Framework

* Based around the idea of a kind of TM “algebra”

* Functions are applied to sets of objects to produce new sets

° mozart
— returns a set containing the 'mozart' topic

* occurrences(mozart)
— returns a set containing all occurrences of the 'mozart' topic

* occurrences(mozart, date-of-birth)

— filters the set returned so that only 'date-of-birth' occurrences are
returned
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Traversing associations

* Find Mozart's birthplace
— player(roles(associations(roles(mozart, person), born-in), place))

* Clearly, this works

* Equally clearly, it's very verbose and not very readable

* Possible solutions

— special functions for association traversal
* traverse(mozart, person, born-in, place)

— special traversal syntax (instead of functions)
* mozart person born-in place

* Both of these seem to work, the second perhaps being the
easiest to understand

— mozart date-of-birth
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The Mozart influence

* operainstances composed-by ...
— here we get into trouble
— we've found the topic we want, but we want to put conditions on it
— we can't traverse further, because that'd give us Germany or Mozart
— possible solution: insert [condition] like in XPath

* oQperainstances composed-by
[ iInfluenced influenced-by influencing ... AND

born-in ...]
— we can't just insert constants here, since they are not traversal steps

— special syntax like == operator could be used to do this

* Qperainstances composed-by
[ iInfluenced influenced-by influencing == mozart AND

born-in == Germany]
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Interactions

* People born same place they died
— person instance-of [ born-in = died-in ]
* we use '=' (not '==") to indicate traversal on both sides

* Number of opera premieres per city
— city instance-of (premiere-of UNION located-in premiere-of)
* now we've found all operas by traversing that path, but no counting
— city instance-of count(premiere-of UNION located-in premiere-of)
* now we've found the numbers, but we lose the cities...
— City instance-of
tuple(this, count(premiere-of UNION located-in premiere-of))
* tuple function produces (X, y) value pairs

* Unresolved issues with no dependencies

— sam issue-in [not(status-of == resolved) AND
not(dependent depends-on prerequisite)]
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Conclusion

* The traversal approach appears to work

* Quite easy when producing a single set of values
* Not as easy when producing collections of values
* Queries look a little bit strange

* Can probably be implemented efficiently
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Coming up...

Robert Barta with AsTMa?
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