What is it about?
- Ontologies and constraints
- The need for a topic map schema mechanism
- A missing but rather important component in a topic map system
- The standardization of such a schema language
- Definition of the topic map lifecycle

Road map
- An introduction to constraints
- Why schemas for topic maps?
- What the standard has to say about constraints
- The topic map life-cycle (steps and roles)
- Potential targets for constraints
- How to represent a topic map schema
- Demo: schema-driven application
- Conclusion

What are constraints?
- Contract between a supplier and a receiver
- In the context of topic maps the designer and the editor agrees upon the rules that govern the objects in a topic map
- Restrictions on the values of properties for classes of objects
- Two types: syntactic and semantic constraints

Syntactic constraints
- Constraints that restrict the syntax in which information is represented
- The topic map standard contains a lot of these

Semantic constraints
- Constraints that restrict the meaning of the information
- The topic map standard says very little about this.
Why constrain topic maps?

- Topic maps easily get very large and complex
- Complexity leads to inconsistency
- Very hard to maintain consistency manually
- Fortunately computers are good at helping out with this

The constraints defined by the standard

- The following types are described:
 - The interchange DTD
 - Architectural constraints
 - Derived architectures
 - Implied constraints
 - The topic naming constraint

The interchange DTD

- Defines the element- and attribute forms that are used to represent a serialized topic map
- The verbal descriptions, content models and attribute declarations define the constraints.
- The fact that the standard has no explicit data model is unfortunate.

Architectural constraints

- Described by "conventional comments" in the topic map DTD
- Example:
 - tmdocs attribute on the addthms element form
 - "Constraint: Must be one or more document entities of topic map documents."

Derived architectures

- The interchange format is defined as an SGML architecture
- More restrictive derived DTDs possible:
 - Tighter content models
 - FIXED or defaulted attributes
 - Not too useful since most TMs will not be authored in the interchange format
 - TMs will most likely be created by dedicated software

Implied constraints

- Constraints that are not explicitly specified by the standard
- Implicit by the fact that SGML is used as the interchange format
- Example:
 - The id of a topic must conform to the restrictions that apply to SGML ids
The topic naming constraint

- No two subjects may have the same name in the same scope
- Such topics should be merged
- It mainly exists to force editors to face the problem of ambiguity
- Example:
 - Paris the capital of France and Paris, Texas.

The topic map life-cycle

- The process of creating a topic map consists of several phases:
 - Ontology design
 - Definition of constraints
 - Creating instances (population)
 - Delivery

Ontology design

- In a topic map some topics are privileged
- The building blocks of a topic map
- A vocabulary
- These topics are important
- Called the topic map ontology

What is an ontology?

- The Free On-line Dictionary of Computing:
 "An explicit formal specification of how to represent the objects, concepts and other entities that are assumed to exist in some area of interest and the relationships that hold among them."

A Topic Map ontology

- ...can consist of:
 - Topic types
 - Association types
 - Occurrence types
 - Facet types
 - Facet value types
 - Themes
 - Plus associations between them
- i.e. the things that one can make instances of

A sample ontology

- ...about geography:
 - Topic types:
 - continent, country, city
 - Association types:
 - borders-with, contains, capital-of
 - Association role types:
 - bordering-country, container, containee, capital
Definition of constraints

• Restricts the valid uses of the ontology
• The ontology is the vocabulary, while the constraints constrain the valid uses of that vocabulary
• Example:
 • the combination of association types and association role types and the type of participating topics in an association must be meaningful

A sample constraint

• An association:
 <assoc type="contains">
 <assocrl type="container" href="[1]"/>
 <assocrl type="containee" href="[2]"/>
 </assoc>
 • [1] a country e.g. Norway, France, …
 • [2] a city e.g. Oslo, Paris, …

A valid association

• The following association is valid according to the constraints we just defined:
 <assoc type="contains">
 <assocrl type="container" href="France"/>
 <assocrl type="containee" href="Paris"/>
 </assoc>

An invalid association

• The following association is invalid according to the constraints we just defined:
 <assoc type="contains">
 <assocrl type="container" href="Paris"/>
 <assocrl type="containee" href="France"/>
 </assoc>

Another invalid association

• This one is even worse:
 <assoc type="containee">
 <assocrl type="contains" href="Paris"/>
 <assocrl type="France" href="capital-of"/>
 </assoc>

Schemas – the powerful combination

• topic map ontology + constraints = topic map schema
• Can be compared to SGML
 • elements and attributes define the ontology
 • content models and datatypes define the constraints
• The topic map designer is responsible for the design of the ontology and constraints
Creating instances (populating)

- Topic maps are instances of a topic map schema
- This step is where the real-world topic maps are created
- The topic map editor is responsible for this step

Delivery

- Presented to end-users
- Use of topic maps in real-world applications
- The "productification" of a topic map
- Examples:
 - Web-based navigation
 - TM-driven applications
 - Search engines
- The responsibility of the topic map publisher

The life-cycle roles (a summary)

- Designer
 - designs the topic map schema (ontology and constraints)
- Editor
 - populates topic maps
- Publisher
 - publishes topic maps

What can a schema be used for?

- validation / checking correctness
- avoid inconsistency
- inferencing
- auto generation of user interfaces
- suggestive user interface
- increased productivity
 - speeds up the population process tremendously

Potential targets for constraints

- The following objects are the primary targets of constraints:
 - Associations
 - Topics
 - Topic names
 - Occurrences
 - Facets
 - Facet values
 - Scope

Associations

- the association type
- number of association roles
- the association role types
- the participating topics
- the types of the participating topics
Topics
- the topic type
- pattern and length constraints on the identity value
- number of characteristics by characteristic type
- valid combinations of characteristic assignments

Topic names
- valid combinations of base names, display names and sort names
- patterns for matching the name strings
- name length

Occurrences
- the occurrence type
- the notation of the information resource (JPEG, HTML)
- the resource location (in-house)
- the addressing notation (XLink)
- the address type (URL, nameloc)
- properties of the address (http, ftp)

Facets
- the facet type
- number of facet values
- the facet value types

Facet values
- the facet value type
- the notation of the information resource (JPEG, HTML)
- the resource location (in-house)
- the addressing notation (XLink)
- the address type (URL, nameloc)
- properties of the address (http, ftp)

Scope
- the set of valid themes for a scopeable object
- themes that must be used together
- themes that must not be used together
How to describe constraints

- two basic requirements for the use of constraints:
 - predicates - tells whether constraints are satisfied or not
 - suggestive - gives a list of valid values for a property based on information from the constraints
- combination of declarative language and programming language most powerful
- hard / impossible to create a complete constraint language

A standardized constraint language

- Are sorely needed for standardization
- This is the most important missing part as the standard stands today
- Interchangeable between topic map systems
- Self documentation

Contestants?

- Topic Map Object Model API
- Generic grove / property set constraint language
- Schemas defined using topic maps
- Conceptual graphs
- EXPRESS
- The Object Constraint Language (OCL)

Sample syntax

- Association constraint described using topic map constructs:
 - `<assoc type="contains" scope="schema">`
 - `<assocrl type="container" href="country"/>`
 - `<assocrl type="containee" href="city"/>`
 - `</assoc>`
- a.k.a topic map template
- 80/20 solution

Demo-time

- A simple schema-driven application for creating associations
- Both able to make inferences (autocompletion) and be suggestive.
- Written on top of the Atlas topic map engine from Ontopia

Conclusion

- Important part of a topic map system
 - increase productivity
 - avoid inconsistency
- A standardized schema language would be preferable
 - would make schemas interchangeable and self-documenting
- An (explicit) abstract data model would probably have to be defined first
 - preferably a property set